Mathematical estimation for maximum flow of goods within a cross-dock to reduce inventory

Author:

Mukherjee Taniya12,Sangal Isha1,Sarkar Biswajit34,Alkadash Tamer M.2

Affiliation:

1. Department of Mathematics & Statistics, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India

2. Department of Administrative Sciences, Gulf University, Sanad, Kingdom of Bahrain

3. Department of Industrial Engineering, Yonsei University, 50 Yonsei-ro, Sinchon-dong, Seodaemun-gu, Seoul, 03722, South Korea

4. Center for Transdisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu 600077, India

Abstract

<abstract><p>Supply chain management has recently renovated its strategy by implementing a cross-docking scheme. Cross-docking is a calculated logistics strategy where freight emptied from inbound vehicles is handled straightforwardly onto outbound vehicles, eliminating the intermediate storage process. The cross-docking approach thrives on the minimum storage time of goods in the inventory. Most of the cross-docks avail temporary storage docks where items can be stored for up to 24 hours before being packed up for transportation. The storage capacity of the cross-dock varies depending on the nature of ownership. In the rented cross-docks center, the temporary storage docks are considered of infinite capacity. This study believes that the temporary storage facilities owned by the cross-dock center are of finite capacity, which subsequently affects the waiting time of the goods. The flow rate of goods within the cross-docks is expected to be maximum to avoid long waiting for goods in the queue. This paper uses a series of max-flow algorithms, namely Ford Fulkerson, Edmond Karp, and Dinic's, to optimize the flow of goods between the inbound port and the outbound dock and present a logical explanation to reduce the waiting time of the trucks. A numerical example is analyzed to prove the efficacity of the algorithm in finding maximum flow. The result demonstrates that Dinic's algorithm performs better than the Ford Fulkerson and Edmond Karp algorithm at addressing the problem of maximum flow at the cross-dock. The algorithm effectively provided the best result regarding iteration and time complexity. In addition, it also suggested the bottleneck paths of the network in determining the maximum flow.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3