Affiliation:
1. College of Electronics and Information Engineering, West Anhui University, Lu'an, China
2. Robot Research Center, Shandong University of Science and Technology, Qingdao, China
Abstract
<abstract>
<p>Traditional back propagation neural networks (BPNNs) for ultrawideband (UWB) indoor localization can effectively improve localization accuracy, although there is high likelihood of becoming trapped in nearby minima. To solve this problem, the random weights and thresholds of the BPNN are optimized using the Harris Hawks optimization algorithm (HHO) to obtain the optimal global solution to enhance the UWB indoor positioning accuracy and NLOS resistance. The results show that the predicted trajectory of the HHO and BPNN hybrid algorithm (HHO-BP) matches the actual position in the two-dimensional localization scenario with four base stations; the optimized average positioning error is effectively reduced in both indoor LOS and NLOS environments. In the LOS environment, the total mean error of the traditional BPNN algorithm is 6.52 cm, which is 26.99% better than the UWB measurement error; in the NLOS environment, the total mean error of the conventional BPNN is 14.82 cm, which is 50.08% better than the UWB measurement error. The HHO–BP algorithm is further optimized on this basis, and the total mean error in the LOS environment is 4.50 cm, which is 22.57% better than the conventional BPNN algorithm; in the NLOS environment, the total mean error is 9.56 cm, which is 17.54% better than the conventional BPNN algorithm. The experimental findings suggest that the approach has greater calibration accuracy and stability than BPNN, making it a viable choice for scenarios requiring high positional precision.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献