Application of reaction-diffusion equations for modeling human and breeding site attraction movement behavior of <i>Aedes aegypti</i> mosquito

Author:

Richter Otto1,Nguyen Anh23,Nguyen Truc34

Affiliation:

1. Institute of Geoecology, Technical University of Braunschweig, Langer Kamp 19c, D38106 Braunschweig, Germany

2. Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72506, Vietnam

3. Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 71308, Vietnam

4. Institute for Environment and Resources, 142 To Hien Thanh, District 10, Ho Chi Minh City 72506, Vietnam

Abstract

<abstract> <p>This paper shows how biological population dynamic models in the form of coupled reaction-diffusion equations with nonlinear reaction terms can be applied to heterogeneous landscapes. The presented systems of coupled partial differential equations (PDEs) combine the dispersal of disease-vector mosquitoes and the spread of the disease in a human population. Realistic biological dispersal behavior is taken into account by applying chemotaxis terms for the attraction to the human host and the attraction of suitable breeding sites. These terms are capable of generating the complex active movement patterns of mosquitoes along the gradients of the attractants. The nonlinear initial boundary value problems are solved numerically for geometries of heterogeneous landscapes, which have been imported from geographic information system data to construct a general-purpose finite-element solver for systems of coupled PDEs. The method is applied to the dispersal of the dengue disease vector for <italic>Aedes aegypti</italic> in a small-scale rural setting consisting of small houses and different breeding sites, and to a large-scale section of the suburban zone of a metropolitan area in Vietnam. Numerical simulations illustrate how the setup of model equations and geographic information can be used for the assessment of control measures, including the spraying patterns of pesticides and biological control by inducing male sterility.</p> <p><disp-formula id="mbe-19-12-603-FE1"> <label/> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="mbe-19-12-603-FE1.jpg"/> </disp-formula></p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3