Achieving deep clustering through the use of variational autoencoders and similarity-based loss

Author:

Ma He

Abstract

<abstract><p>Clustering is an important and challenging research topic in many fields. Although various clustering algorithms have been developed in the past, traditional shallow clustering algorithms cannot mine the underlying structural information of the data. Recent advances have shown that deep clustering can achieve excellent performance on clustering tasks. In this work, a novel variational autoencoder-based deep clustering algorithm is proposed. It treats the Gaussian mixture model as the prior latent space and uses an additional classifier to distinguish different clusters in the latent space accurately. A similarity-based loss function is proposed consisting specifically of the cross-entropy of the predicted transition probabilities of clusters and the Wasserstein distance of the predicted posterior distributions. The new loss encourages the model to learn meaningful cluster-oriented representations to facilitate clustering tasks. The experimental results show that our method consistently achieves competitive results on various data sets.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Datacube segmentation via deep spectral clustering;Machine Learning: Science and Technology;2024-07-22

2. Deep Clustering: A Comprehensive Survey;IEEE Transactions on Neural Networks and Learning Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3