An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning

Author:

Yao Shixuan1,Liu Xiaochen2,Zhang Yinghui2,Cui Ze3

Affiliation:

1. School of Software Engineering, Dalian University of Foreign Languages, Dalian 116044, China

2. School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China

3. School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

<abstract> <p>In recent years, dynamic programming and reinforcement learning theory have been widely used to solve the nonlinear control system (NCS). Among them, many achievements have been made in the construction of network model and system stability analysis, but there is little research on establishing control strategy based on the detailed requirements of control process. Spurred by this trend, this paper proposes a detail-reward mechanism (DRM) by constructing the reward function composed of the individual detail evaluation functions in order to replace the utility function in the Hamilton-Jacobi-Bellman (HJB) equation. And this method is introduced into a wider range of deep reinforcement learning algorithms to solve optimization problems in NCS. After the mathematical description of the relevant characteristics of NCS, the stability of iterative control law is proved by Lyapunov function. With the inverted pendulum system as the experiment object, the dynamic environment is designed and the reward function is established by using the DRM. Finally, three deep reinforcement learning algorithm models are designed in the dynamic environment, which are based on Deep Q-Networks, policy gradient and actor-critic. The effects of different reward functions on the experimental accuracy are compared. The experimental results show that in NCS, using the DRM to replace the utility function in the HJB equation is more in line with the detailed requirements of the designer for the whole control process. By observing the characteristics of the system, designing the reward function and selecting the appropriate deep reinforcement learning algorithm model, the optimization problem of NCS can be solved.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3