Iterative CT reconstruction based on ADMM using shearlet sparse regularization

Author:

Xiao Dayu1,Li Jianhua1,Zhao Ruotong2,Qi Shouliang1,Kang Yan3

Affiliation:

1. College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110819, China

2. School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China

3. College of Health Science and Environment Engineering, Shenzhen Technology University, Shenzhen 518118, China

Abstract

<abstract> <p>The total variation (TV) method favors solutions with the piece-wise constant assumption of the desired image from sparse-view sampling, for example, simple geometric images with flat intensity. When the phantoms become more complex and contain complicated textures, for example, high-resolution phantom and lung CT images, the images reconstructed by TV regularization may lose their contrast and fine structures. One of the optimally sparse transforms for images, the shearlet transform, has C<sup>2</sup> without discontinuities on C<sup>2</sup> curves, giving excellent sensitive directional information as compared with other wavelet transform approaches. Here, we developed a Shearlet-Sparse Regularization (SSR) algorithm solved with the Alternating Direction Method of Multipliers (ADMM) to overcome this limitation. With the strengthened characteristics of SSR, we performed one simulation experiment and two real experiments using a NeuViz 64 X-ray CT scanning system to measure the performance and properties of proposed algorithm. The results demonstrate that the SSR method exhibits the advantage of providing high-quality directional information and contrast as compared with TV.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lidar Reflective Tomography of the Target Under Incomplete View State;IEEE Journal on Miniaturization for Air and Space Systems;2023-03

2. A new difference of anisotropic and isotropic total variation regularization method for image restoration;Mathematical Biosciences and Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3