Investigation of braided stents in curved vessels in terms of "Dogbone" deformation

Author:

Pan Chen12,Zeng Xinyun2,Han Yafeng1,Lu Jiping1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China

Abstract

<abstract> <p>"Dogbone" deformation that the diameters of two ends are larger than the middle diameter of the stent under the effect of the balloon expanding, is one of the important standards to evaluate the mechanical properties of vascular stents. It is a huge challenge to simulate and evaluate the "Dogbone" behaviors of braided stents in the curved vessels. In this study, the key work was to investigate the "Dogbone" deformations of braided stents in the curved vessels by designing main parameters including strut diameter, braiding angle, and the circumferential number of unit cell. Based on the "Dogbone" stents in the curved vessels, the impact of "Dogbone" on the fatigue properties of braided stents was analyzed under the pulsatile effect of vessels. The influence of "Dogbone" stents on stress distribution of vascular walls was studied. To evaluate the "Dogbone" behaviors of stents in the curved vessels, the calculation method of "Dogbone" was improved by calculating the centerline and the bus bar of the curved vessels. Braided stents with various parameters (strut diameter <italic>t</italic> = 100,125 and 152 μm, braiding angle <italic>α</italic> = 30, 40 and 50°, the circumferential number of unit cell <italic>N</italic> = 8, 10, and 12) were designed respectively. Numerical simulation method was used to mimic the "Dogbone" deformation after stent expansion. The results showed that strut diameter and braiding angle had more influence on "Dogbone" deformations than the circumferential number of unit cell. "Dogbone" deformation could adversely affect fatigue performance and vascular walls.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3