Effect of dual-convolutional neural network model fusion for Aluminum profile surface defects classification and recognition

Author:

Liu Xiaochen, ,He Weidong,Zhang Yinghui,Yao Shixuan,Cui Ze, ,

Abstract

<abstract> <p>Classifying and identifying surface defects is essential during the production and use of aluminum profiles. Recently, the dual-convolutional neural network(CNN) model fusion framework has shown promising performance for defects classification and recognition. Spurred by this trend, this paper proposes an improved dual-CNN model fusion framework to classify and identify defects in aluminum profiles. Compared with traditional dual-CNN model fusion frameworks, the proposed architecture involves an improved fusion layer, fusion strategy, and classifier block. Specifically, the suggested method extracts the feature map of the aluminum profile RGB image from the pre-trained VGG16 model's <italic>pool5</italic> layer and the feature map of the maximum pooling layer of the suggested A4 network, which is added after the Alexnet model. then, weighted bilinear interpolation unsamples the feature maps extracted from the maximum pooling layer of the A4 part. The network layer and upsampling schemes ensure equal feature map dimensions ensuring feature map merging utilizing an improved wavelet transform. Finally, global average pooling is employed in the classifier block instead of dense layers to reduce the model's parameters and avoid overfitting. The fused feature map is then input into the classifier block for classification. The experimental setup involves data augmentation and transfer learning to prevent overfitting due to the small-sized data sets exploited, while the K cross-validation method is employed to evaluate the model's performance during the training process. The experimental results demonstrate that the proposed dual-CNN model fusion framework attains a classification accuracy higher than current techniques, and specifically 4.3% higher than Alexnet, 2.5% for VGG16, 2.9% for Inception v3, 2.2% for VGG19, 3.6% for Resnet50, 3% for Resnet101, and 0.7% and 1.2% than the conventional dual-CNN fusion framework 1 and 2, respectively, proving the effectiveness of the proposed strategy.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3