Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia

Author:

Deshpande Nilkanth Mukund, ,Gite Shilpa,Pradhan Biswajeet,Kotecha Ketan,Alamri Abdullah, , , , , ,

Abstract

<abstract> <p>The diagnosis of leukemia involves the detection of the abnormal characteristics of blood cells by a trained pathologist. Currently, this is done manually by observing the morphological characteristics of white blood cells in the microscopic images. Though there are some equipment- based and chemical-based tests available, the use and adaptation of the automated computer vision-based system is still an issue. There are certain software frameworks available in the literature; however, they are still not being adopted commercially. So there is a need for an automated and software- based framework for the detection of leukemia. In software-based detection, segmentation is the first critical stage that outputs the region of interest for further accurate diagnosis. Therefore, this paper explores an efficient and hybrid segmentation that proposes a more efficient and effective system for leukemia diagnosis. A very popular publicly available database, the acute lymphoblastic leukemia image database (ALL-IDB), is used in this research. First, the images are pre-processed and segmentation is done using Multilevel thresholding with Otsu and Kapur methods. To further optimize the segmentation performance, the Learning enthusiasm-based teaching-learning-based optimization (LebTLBO) algorithm is employed. Different metrics are used for measuring the system performance. A comparative analysis of the proposed methodology is done with existing benchmarks methods. The proposed approach has proven to be better than earlier techniques with measuring parameters of PSNR and Similarity index. The result shows a significant improvement in the performance measures with optimizing threshold algorithms and the LebTLBO technique.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference103 articles.

1. N. M. Deshpande, S. S. Gite, R. Aluvalu, A brief bibliometric survey of leukemia detection by machine learning and deep learning approaches, Lib. Philo. Pract., 4569 (2020).

2. S. Shafique, S. Tehsin, S. Anas, F. Masud, Computer-assisted acute lymphoblastic leukemia detection and diagnosis, in 2nd International Conference on Communication, Computing and Digital Systems, (2019), 184–189.

3. H. Singh, G. Kaur, Automatic detection of blood cancer in microscopic images: a review, Int. J. Innovations. Adv. Comput. Sci., 6 (2017), 40–43.

4. G. Biji, S. Hariharan, White blood cell segmentation techniques in microscopic images for leukemia detection, IOSR J. Dental Med. Sci., 15 (2016), 45–51.

5. E. U. Alam, S. Banik, L. Chowdhury. A statistical approach to classify the leukemia patients from generic gene features, in 2020 International Conference on Computer Communication and Informatics, (2020), 1–6.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Transformer-Based Model for Acute Lymphoblastic Leukemia Segmentation;TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON);2023-10-31

2. A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation;Frontiers in Oncology;2023-09-04

3. Leukemia segmentation and classification: A comprehensive survey;Computers in Biology and Medicine;2022-11

4. A Multistage Transfer Learning Approach for Acute Lymphoblastic Leukemia Classification;2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON);2022-10-26

5. Diabetic Retinopathy Classification using Transfer Learning Techniques;2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT);2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3