The parallel computing of node centrality based on GPU

Author:

Yin Siyuan, ,Hu Yanmei,Ren Yuchun

Abstract

<abstract> <p>Many systems in real world can be represented as network, and network analysis can help us understand these systems. Node centrality is an important problem and has attracted a lot of attention in the field of network analysis. As the rapid development of information technology, the scale of network data is rapidly increasing. However, node centrality computation in large-scale networks is time consuming. Parallel computing is an alternative to speed up the computation of node centrality. GPU, which has been a core component of modern computer, can make a large number of core tasks work in parallel and has the ability of big data processing, and has been widely used to accelerate computing. Therefore, according to the parallel characteristic of GPU, we design the parallel algorithms to compute three widely used node centralities, i.e., closeness centrality, betweenness centrality and PageRank centrality. Firstly, we classify the three node centralities into two groups according to their definitions; secondly, we design the parallel algorithms by mapping the centrality computation of different nodes into different blocks or threads in GPU; thirdly, we analyze the correlations between different centralities in several networks, benefited from the designed parallel algorithms. Experimental results show that the parallel algorithms designed in this paper can speed up the computation of node centrality in large-scale networks, and the closeness centrality and the betweenness centrality are weakly correlated, although both of them are based on the shortest path.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3