Multiscale modeling of skeletal muscle to explore its passive mechanical properties and experiments verification

Author:

Liu Fengjie, ,Wang Monan,Ma Yuzheng

Abstract

<abstract> <p>The research of the mechanical properties of skeletal muscle has never stopped, whether in experimental tests or simulations of passive mechanical properties. To investigate the effect of biomechanical properties of micro-components and geometric structure of muscle fibers on macroscopic mechanical behavior, in this manuscript, we establish a multiscale model where constitutive models are proposed for fibers and the extracellular matrix, respectively. Besides, based on the assumption that the fiber cross-section can be expressed by Voronoi polygons, we optimize the Voronoi polygons as curved-edge Voronoi polygons to compare the effects of the two cross-sections on macroscopic mechanical properties. Finally, the macroscopic stress response is obtained through the numerical homogenization method. To verify the effectiveness of the multi-scale model, we measure the mechanical response of skeletal muscles in the in-plane shear, longitudinal shear, and tensions, including along the fiber direction and perpendicular to the fiber direction. Compared with experimental data, the simulation results show that this multiscale framework predicts both the tension response and the shear response of skeletal muscle accurately. The root mean squared error (RMSE) is 0.0035 MPa in the tension along the fiber direction; The RMSE is 0.011254 MPa in the tension perpendicular to the fiber direction; The RMSE is 0.000602 MPa in the in-plane shear; The RMSE was 0.00085 MPa in the longitudinal shear. Finally, we obtained the influence of the component constitutive model and muscle fiber cross-section on the macroscopic mechanical behavior of skeletal muscle. In terms of the tension perpendicular to the fiber direction, the curved-edge Voronoi polygons achieve the result closer to the experimental data than the Voronoi polygons. Skeletal muscle mechanics experiments verify the effectiveness of our multiscale model. The comparison results of experiments and simulations prove that our model can accurately capture the tension and shear behavior of skeletal muscle.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3