Tracking glioblastoma progression after initial resection with minimal reaction-diffusion models
-
Published:2022
Issue:6
Volume:19
Page:5446-5481
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Harris Duane C.1, Mignucci-Jiménez Giancarlo2, Xu Yuan2, Eikenberry Steffen E.1, Quarles C. Chad2, Preul Mark C.2, Kuang Yang1, Kostelich Eric J.1
Affiliation:
1. School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA 2. Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
Abstract
<abstract><p>We describe a preliminary effort to model the growth and progression of glioblastoma multiforme, an aggressive form of primary brain cancer, in patients undergoing treatment for recurrence of tumor following initial surgery and chemoradiation. Two reaction-diffusion models are used: the Fisher-Kolmogorov equation and a 2-population model, developed by the authors, that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using $ 144 $ different choices of model parameters. In $ 9 $ cases, model parameters can be identified such that the simulated tumor, using both models, contains at least 40 percent of the volume of the observed tumor. We discuss some potential improvements that can be made to the parameterizations of the models and their initialization.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference48 articles.
1. I. W. Pan, S. D. Ferguson, S. Lam, Patient and treatment factors associated with survival among adult glioblastoma patients: A USA population-based study from 2000–2010, J. Clin. Neurosci., 22 (2015), 1575–1581. https://doi.org/10.1016/j.jocn.2015.03.032 2. R. Stupp, W. P. Mason, M. J. Van Den Bent, M. Weller, B. Fisher, M. J. B. Taphoorn, et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, New Engl. J. Med., 352 (2005), 987–996. https://doi.org/10.1056/NEJMoa043330 3. M. Eriksson, J. Kahari, A. Vestman, M. Hallmans, M. Johansson, A. T. Bergenheim, et al., Improved treatment of glioblastoma–changes in survival over two decades at a single regional Centre. Acta Oncol., 58 (2019), 334–341. https://doi.org/10.1080/0284186X.2019.1571278 4. M. Weller, T. Cloughesy, J. R. Perry, W. Wick, Standards of care for treatment of recurrent glioblastoma–-are we there yet?, Neuro-Oncology, 15 (2013), 4–27. https://doi.org/10.1093/neuonc/nos273 5. K. Seystahl, W. Wick, M. Weller, Therapeutic options in recurrent glioblastoma–an update, Crit. Rev. Oncol. Hemat., 99 (2016), 389–408. https://doi.org/10.1016/j.critrevonc.2016.01.018
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|