Abstract
<abstract>
<p>In the theoretical controller design of the high-speed supercavitating vehicle (HSSV), there will always be the problem that the physical saturation limit has to be exceeded by the motion range of the actuator to satisfy the requirements of stable motion of the supercavitating vehicle. This paper proposes a solution which could satisfy the requirements of stable motion of the vehicle without saturation of the actuator. First of all, the rotation range of the actuator and the motion performance of the vehicle with robust controller are analyzed under the condition where saturation is neglected. Then, according to the analysis conclusion, the controller is improved by using linear active disturbance rejection control (LADRC) method, which provides the additional control component to reduce the rotation angle and rotation speed of the actuator. Finally, the simulation proves that the solution could realize the stable motion of vehicle without saturation of actuator.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference31 articles.
1. J. Dzielski, A. Kurdila, A benchmark control problem for supercavitating vehicles and an initial investigation of solution, J. Vib. Control, 9 (2003), 791–804. doi: 10.1177/1077546303009007004.
2. I. N. Kirschner, D. C. Kring, A. W. Stokes, N. E. Fine, J. S. Uhlman, Control strategies for supercavitating vehicles, J. J. Vib. Control, 8 (2002), 219–242. doi: 10.1177/107754602023818.
3. V. N. Semenenko, Artificial supercavitation, physics and calculation, in RTO AVT lecture series on supercavitating flows, Von Karman Institute, Brussels Belgium, 2001. Available from: https://www.researchgate.net/publication/235099692.
4. R. E. A. Arndt, Cavitation in vortical flows, Annu. Rev. Fluid Mech., 34 (2003), 143–175. doi: 10.1146/annurev.fluid.34.082301.114957.
5. D. E. Sanabria., G. J. Balas, R. E. A. Arndt, Modeling, control, and experimental validation of a high-speed supercavitating vehicle, IEEE J. Oceanic Eng., 40 (2015), 362–373. doi: 10.1109/JOE.2014.2312591.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献