The defect detection for X-ray images based on a new lightweight semantic segmentation network

Author:

Yi Xin, ,Peng Chen,Zhang Zhen,Xiao Liang

Abstract

<abstract><p>The tire factory mainly inspects tire quality through X-ray images. In this paper, an end-to-end lightweight semantic segmentation network is proposed to realize the error detection of bead toe. In the network, firstly, the texture feature of different regions of tire is extracted by an encoder. Then, we introduce a decoder to fuse the output feature of the encoder. As the dimension of the feature maps is reduced, the positions of bead toe in the X-ray image have been recorded. When evaluating the final segmentation effect, we propose a local mIoU(L-mIoU) index. The segmentation accuracy and reasoning speed of the network are verified on the tire X-ray image set. Specifically, for 512 $ \times $ 512 input images, we achieve 97.1% mIoU and 92.4% L-mIoU. Alternatively, the bead toe coordinates are calculated using only 1.0 s.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Casting defect region segmentation method based on dual-channel encoding–fusion decoding network;Expert Systems with Applications;2024-08

2. End-to-end tire defect detection model based on transfer learning techniques;Neural Computing and Applications;2024-04-22

3. The assessment of the technical condition of a tire belt using computed tomography.;Eksploatacja i Niezawodność – Maintenance and Reliability;2024-01-30

4. Tire Radiogram Defect Detection Based on ESSNet;2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI);2023-08-09

5. Defect Detection Methods for Industrial Products Using Deep Learning Techniques: A Review;Algorithms;2023-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3