Geographical network model for COVID-19 spread among dynamic epidemic regions

Author:

Macías Roman Zúñiga, ,Gutiérrez-Pulido Humberto,Arroyo Edgar Alejandro Guerrero,González Abel Palafox

Abstract

<abstract><p>Pandemic due to SARS-CoV-2 (COVID-19) has affected to world in several aspects: high number of confirmed cases, high number of deaths, low economic growth, among others. Understanding of spatio-temporal dynamics of the virus is helpful and necessary for decision making, for instance to decide where, whether and how, non-pharmaceutical intervention policies are to be applied. This point has not been properly addressed in literature since typical strategies do not consider marked differences on the epidemic spread across country or large territory. Those strategies assume similarities and apply similar interventions instead. This work is focused on posing a methodology where spatio-temporal epidemic dynamics is captured by means of dividing a territory in time-varying epidemic regions, according to geographical closeness and infection level. In addition, a novel Lagrangian-SEIR-based model is posed for describing the dynamic within and between those regions. The capabilities of this methodology for identifying local outbreaks and reproducing the epidemic curve are discussed for the case of COVID-19 epidemic in Jalisco state (Mexico). The contagions from July 31, 2020 to March 31, 2021 are analyzed, with monthly adjustments, and the estimates obtained at the level of the epidemic regions present satisfactory results since Relative Root Mean Squared Error RRMSE is below 15% in most of regions, and at the level of the whole state outstanding with RRMSE below 5%.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference67 articles.

1. E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis., 20 (2020), 533–534.

2. The World Bank, World Bank open data, 2021. Available from: https://databank.worldbank.org/home.aspx.

3. SEGOB, Acuerdo por el que se establecen acciones extraordinarias para atender la emergencia sanitaria generada por el virus SARS-CoV2, 2020. Available from: https://dof.gob.mx/nota_detalle.php?codigo=5590914&fecha=31%2F03%2F2020.

4. INEGI, Censo de población y vivienda 2020, características de las localidades, tabulados predefinidos, 2021. Available from: https://www.inegi.org.mx/programas/ccpv/2020/.

5. I. Ibarra-Nava, J. A. Cardenas-De La Garza, R. E. Ruiz-Lozano, R. G. Salazar-Montalvo, Mexico and the COVID-19 response, Disaster Med. Public Health Prep., 14 (2020), e17–e18. https://doi.org/10.1017/dmp.2020.260

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model;International Journal of Environmental Research and Public Health;2022-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3