A genetic algorithm with two-step rank-based encoding for closed-loop supply chain network design

Author:

Ding Bowen1,Ma Zhaobin1,Ren Shuoyan1,Gu Yi1,Qian Pengjiang1,Zhang Xin12

Affiliation:

1. School of Artificial Intelligence and Computer Science, and Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi 214122, China

2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

Abstract

<abstract> <p>The closed-loop supply chain (CLSC) plays an important role in sustainable development and can help to increase the economic benefits of enterprises. The optimization for the CLSC network is a complicated problem, since it often has a large problem scale and involves multiple constraints. This paper proposes a general CLSC model to maximize the profits of enterprises by determining the transportation route and delivery volume. Due to the complexity of the multi-constrained and large-scale model, a genetic algorithm with two-step rank-based encoding (GA-TRE) is developed to solve the problem. Firstly, a two-step rank-based encoding is designed to handle the constraints and increase the algorithm efficiency, and the encoding scheme is also used to improve the genetic operators, including crossover and mutation. The first step of encoding is to plan the routes and predict their feasibility according to relevant constraints, and the second step is to set the delivery volume based on the feasible routes using a rank-based method to achieve greedy solutions. Besides, a new mutation operator and an adaptive population disturbance mechanism are designed to increase the diversity of the population. To validate the efficiency of the proposed algorithm, six heuristic algorithms are compared with GA-TRE by using different instances with three problem scales. The results show that GA-TRE can obtain better solutions than the competitors, especially on large-scale instances.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3