Optimal harvesting for a periodic $ n $-dimensional food chain model with size structure in a polluted environment

Author:

Zhang Tainian1,Luo Zhixue2,Zhang Hao2

Affiliation:

1. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

<abstract><p>This study examines an optimal harvesting problem for a periodic $ n $-dimensional food chain model that is dependent on size structure in a polluted environment. This is closely related to the protection of biodiversity, as well as the development and utilization of renewable resources. The model contains state variables representing the density of the $ i $th population, the concentration of toxicants in the $ i $th population, and the concentration of toxicants in the environment. The well-posedness of the hybrid system is proved by using the fixed point theorem. The necessary optimality conditions are derived by using the tangent-normal cone technique in nonlinear functional analysis. The existence and uniqueness of the optimal control pair are verified via the Ekeland variational principle. The finite difference scheme and the chasing method are used to approximate the nonnegative T-periodic solution of the state system corresponding to a given initial datum. Some numerical tests are given to illustrate that the numerical solution has good periodicity. The objective functional here represents the total profit obtained from harvesting $ n $ species.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3