Inverse problem approaches for mutation laws in heterogeneous tumours with local and nonlocal dynamics

Author:

Alwuthaynani Maher, ,Eftimie Raluca,Trucu Dumitru,

Abstract

<abstract><p>Cancer cell mutations occur when cells undergo multiple cell divisions, and these mutations can be spontaneous or environmentally-induced. The mechanisms that promote and sustain these mutations are still not fully understood.</p> <p>This study deals with the identification (or reconstruction) of the usually unknown cancer cell mutation law, which lead to the transformation of a primary tumour cell population into a secondary, more aggressive cell population. We focus on local and nonlocal mathematical models for cell dynamics and movement, and identify these mutation laws from macroscopic tumour snapshot data collected at some later stage in the tumour evolution. In a local cancer invasion model, we first reconstruct the mutation law when we assume that the mutations depend only on the surrounding cancer cells (i.e., the ECM plays no role in mutations). Second, we assume that the mutations depend on the ECM only, and we reconstruct the mutation law in this case. Third, we reconstruct the mutation when we assume that there is no prior knowledge about the mutations. Finally, for the nonlocal cancer invasion model, we reconstruct the mutation law that depends on the cancer cells and on the ECM. For these numerical reconstructions, our approximations are based on the finite difference method combined with the finite elements method. As the inverse problem is ill-posed, we use the Tikhonov regularisation technique in order to regularise the solution. Stability of the solution is examined by adding additive noise into the measurements.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3