PBDiff: Neural network based program-wide diffing method for binaries

Author:

Yu Lu, ,Lu Yuliang,Shen Yi,Zhao Jun,Zhao Jiazhen,

Abstract

<abstract><p>Program-wide binary code diffing is widely used in the binary analysis field, such as vulnerability detection. Mature tools, including BinDiff and TurboDiff, make program-wide diffing using rigorous comparison basis that varies across versions, optimization levels and architectures, leading to a relatively inaccurate comparison result. In this paper, we propose a program-wide binary diffing method based on neural network model that can make diffing across versions, optimization levels and architectures. We analyze the target comparison files in four different granularities, and implement the diffing by both top down process and bottom up process according to the granularities. The top down process aims to narrow the comparison scope, selecting the candidate functions that are likely to be similar according to the call relationship. Neural network model is applied in the bottom up process to vectorize the semantic features of candidate functions into matrices, and calculate the similarity score to obtain the corresponding relationship between functions to be compared. The bottom up process improves the comparison accuracy, while the top down process guarantees efficiency. We have implemented a prototype PBDiff and verified its better performance compared with state-of-the-art BinDiff, Asm2vec and TurboDiff. The effectiveness of PBDiff is further illustrated through the case study of diffing and vulnerability detection in real-world firmware files.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference43 articles.

1. Synopsys 2020 open source security and risk analysis report, 2020. Avaiable from: https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html?cmp=pr-sig.

2. Eliminating vulnerabilities in third-party code with binary analysis, 2020. Avaiable from: https://codesonar.grammatech.com/eliminating-vulnerabilities-in-third-party-code-with-binary-analysis.

3. Breaking down mirai: An iot ddos botnet, 2020. Avaiable from: https://www.imperva.com/blog/malware-analysis-mirai-ddos-botnet/.

4. Diaphora, 2020. Avaiable from: https://github.com/joxeankoret/diaphora.

5. Zynamics bindiff, 2020. Avaiable from: https://www.zynamics.com/bindiff.html.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3