Double decoupled network for imbalanced obstetric intelligent diagnosis

Author:

Zhang Kunli12,Zhang Shuai1,Song Yu1,Cai Linkun3,Hu Bin1

Affiliation:

1. College of Computer Intelligence, Zhengzhou University, Zhengzhou, China

2. Pengcheng laboratory, Shenzhen, Guangdong, China

3. College of Biological Science and Medical Engineering, Beihang University, Beijing, China

Abstract

<abstract> <p>Electronic Medical Record (EMR) is the data basis of intelligent diagnosis. The diagnosis results of an EMR are multi-disease, including normal diagnosis, pathological diagnosis and complications, so intelligent diagnosis can be treated as multi-label classification problem. The distribution of diagnostic results in EMRs is imbalanced. And the diagnostic results in one EMR have a high coupling degree. The traditional rebalancing methods does not function effectively on highly coupled imbalanced datasets. This paper proposes Double Decoupled Network (DDN) based intelligent diagnosis model, which decouples representation learning and classifier learning. In the representation learning stage, Convolutional Neural Networks (CNN) is used to learn the original features of the data. In the classifier learning stage, a Decoupled and Rebalancing highly Imbalanced Labels (DRIL) algorithm is proposed to decouple the highly coupled diagnostic results and rebalance the datasets, and then the balanced datasets is used to train the classifier. This paper evaluates the proposed DDN using Chinese Obstetric EMR (COEMR) datasets, and verifies the effectiveness and universality of the model on two benchmark multi-label text classification datasets: Arxiv Academic Papers Datasets (AAPD) and Reuters Corpus1 (RCV1). Demonstrating the effectiveness of the proposed methods is an imbalanced obstetric EMRs. The accuracy of DDN model on COEMR, AAPD and RCV1 datasets is 84.17, 86.35 and 93.87% respectively, which is higher than the current optimal experimental results.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3