Author:
Lee Dong-Gun,Seo Yeong-Seok
Abstract
<abstract>
<p>In software engineering, testing has long been a research area of software maintenance. Testing is extremely expensive, and there is no guarantee that all defects will be found within a single round of testing. Therefore, fixing defects that are not discovered by a single round of testing is important for reducing the test costs. During the software maintenance process, testing is conducted within the scope of a set of test cases called a test suite. Mutation testing is a method that uses mutants to evaluate whether the test cases of the test suite are appropriate. In this paper, an approach is proposed that uses the mutants of a mutation test to identify defects that are not discovered through a single round of testing. The proposed method simultaneously applies two or more mutants to a single program to define and record the relationships between different lines of code. In turn, these relationships are examined using the defects that were discovered by a single round of testing, and possible defects are recommended from among the recorded candidates. To evaluate the proposed method, a comparative study was conducted using the fault localization method, which is commonly employed in defect prediction, as well as the Defects4J defect prediction dataset, which is widely used in software defect prediction. The results of the evaluation showed that the proposed method achieves a better performance than seven other fault localization methods (Tarantula, Ochiai, Opt2, Barinel, Dstar2, Muse, and Jaccard).</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献