Runtime verification in uncertain environment based on probabilistic model learning

Author:

Zhou Ge1,Yang Chunzheng2,Lu Peng3,Chen Xi4

Affiliation:

1. Department of Computer Science and Technology, National University of Defense Technology, Hunan, Changsha 410081, China

2. Moral Culture Research Center, Hunan Normal University, Hunan, Changsha 410073, China

3. School of Economics and Management, Xinjiang University, Xinjiang, Urumqi 830049, China

4. Staff Department of Hunan Armed Police Corps, Hunan, Changsha 410022, China

Abstract

<abstract><p>Runtime verification (RV) is a lightweight approach to detecting temporal errors of system at runtime. It confines the verification on observed trajectory which avoids state explosion problem. To predict the future violation, some work proposed the predictive RV which uses the information from models or static analysis. But for software whose models and codes cannot be obtained, or systems running under uncertain environment, these predictive methods cannot take effect. Meanwhile, RV in general takes multi-valued logic as the specification languages, for example the $ true $, $ false $ and $ inconclusive $ in three-valued semantics. They cannot give accurate quantitative description of correctness when $ inconclusive $ is encountered. We in this paper present a RV method which learns probabilistic model of system and environment from history traces and then generates probabilistic runtime monitor to quantitatively predict the satisfaction of temporal property at each runtime state. In this approach, Hidden Markov Model (HMM) is firstly learned and then transformed to Discrete Time Markov Chain (DTMC). To construct incremental monitor, the monitored LTL property is translated into Deterministic Rabin Automaton (DRA). The final probabilistic monitor is obtained by generating the product of DTMC and DRA, and computing the probabilities for each state. With such a method, one can give early warning once the probability of correctness is lower than a pre-defined threshold, and have the chance to do adjustment in advance. The method has been implemented and experimented on real UAS (Unmanned Aerial Vehicle) simulation platform.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty in runtime verification: A survey;Computer Science Review;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3