BreaCNet: A high-accuracy breast thermogram classifier based on mobile convolutional neural network

Author:

Roslidar Roslidar, ,Syaryadhi Mohd,Saddami Khairun,Pradhan Biswajeet,Arnia Fitri,Syukri Maimun,Munadi Khairul, , , , , , ,

Abstract

<abstract><p>The presence of a well-trained, mobile CNN model with a high accuracy rate is imperative to build a mobile-based early breast cancer detector. In this study, we propose a mobile neural network model breast cancer mobile network (BreaCNet) and its implementation framework. BreaCNet consists of an effective segmentation algorithm for breast thermograms and a classifier based on the mobile CNN model. The segmentation algorithm employing edge detection and second-order polynomial curve fitting techniques can effectively capture the thermograms' region of interest (ROI), thereby facilitating efficient feature extraction. The classifier was developed based on ShuffleNet by adding one block consisting of a convolutional layer with 1028 filters. The modified Shufflenet demonstrated a good fit learning with 6.1 million parameters and 22 MB size. Simulation results showed that modified ShuffleNet alone resulted in a 72% accuracy rate, but the performance excelled to a 100% accuracy rate when integrated with the proposed segmentation algorithm. In terms of diagnostic accuracy of the normal and abnormal test, BreaCNet significantly improves the sensitivity rate from 43% to 100% and specificity of 100%. We confirmed that feeding only the ROI of the input dataset to the network can improve the classifier's performance. On the implementation aspect of BreaCNet, the on-device inference is recommended to ensure users' data privacy and handle an unreliable network connection.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3