Author:
Mezouaghi Abdelheq, ,Djillali Salih,Zeb Anwar,Nisar Kottakkaran Sooppy, , , ,
Abstract
<abstract><p>In the case of an epidemic, the government (or population itself) can use protection for reducing the epidemic. This research investigates the global dynamics of a delayed epidemic model with partial susceptible protection. A threshold dynamics is obtained in terms of the basic reproduction number, where for $ R_0 < 1 $ the infection will extinct from the population. But, for $ R_0 > 1 $ it has been shown that the disease will persist, and the unique positive equilibrium is globally asymptotically stable. The principal purpose of this research is to determine a relation between the isolation rate and the basic reproduction number in such a way we can eliminate the infection from the population. Moreover, we will determine the minimal protection force to eliminate the infection for the population. A comparative analysis with the classical SIR model is provided. The results are supported by some numerical illustrations with their epidemiological relevance.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献