Comparison of exact and approximate approaches to UAVs mission contingency planning in dynamic environments

Author:

Radzki Grzegorz1,Bocewicz Grzegorz1,Wikarek Jaroslaw2,Nielsen Peter3,Banaszak Zbigniew1

Affiliation:

1. Faculty of Electronics and Computer Science, Koszalin University of Technology, Poland

2. Department of Information Systems, Kielce University of Technology, Kielce, Poland

3. Department of Materials and Production, Aalborg University, Denmark

Abstract

<abstract> <p>This paper presents a novel approach to the joint proactive and reactive planning of deliveries by an unmanned aerial vehicle (UAV) fleet. We develop a receding horizon-based approach to contingency planning for the UAV fleet's mission. We considered the delivery of goods to spatially dispersed customers, over an assumed time horizon. In order to take into account forecasted weather changes that affect the energy consumption of UAVs and limit their range, we propose a set of reaction rules that can be encountered during delivery in a highly dynamic and unpredictable environment. These rules are used in the course of designing the contingency plans related to the need to implement an emergency return of the UAV to the base or handling of ad hoc ordered deliveries. Due to the nonlinearity of the environment's characteristics, both constraint programming and genetic algorithm paradigms have been implemented. Because of the NP-difficult nature of the considered planning problem, conditions have been developed that allow for the acceleration of calculations. The multiple computer experiments carried out allow for comparison representatives of the approximate and exact methods so as to judge which approach is faster for which size of the selected instance of the UAV mission planning problem.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3