Optimal control in pharmacokinetic drug administration

Author:

Hungerbühler Norbert

Abstract

<abstract><p>We consider a two-box model for the administration of a therapeutic substance and discuss two scenarios: First, the substance should have an optimal therapeutic concentration in the central compartment (typically blood) and be degraded in an organ, the peripheral compartment (e.g., the liver). In the other scenario, the concentration in the peripheral compartment should be optimized, with the blood serving only as a means of transport. In either case the corresponding optimal control problem is to determine a dosing schedule, i.e., how to administer the substance as a function $ u $ of time to the central compartment so that the concentration of the drug in the central or in the peripheral compartment remains as closely as possible at its optimal therapeutic level. We solve the optimal control problem for the central compartment explicitly by using the calculus of variations and the Laplace transform. We briefly discuss the effect of the approximation of the Dirac delta distribution by a bolus. The optimal control function $ u $ for the central compartment satisfies automatically the condition $ u\ge 0 $. But for the peripheral compartment one has to solve an optimal control problem with the non-linear constraint $ u\ge 0 $. This problem does not seem to be widely studied in the current literature in the context of pharmacokinetics. We discuss this question and propose two approximate solutions which are easy to compute. Finally we use Pontryagin's Minimum Principle to deduce the exact solution for the peripheral compartment.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3