Abstract
<abstract><p>The most common non-monotonic hazard rate situations in life sciences and engineering involves bathtub shapes. This paper focuses on the quantile residual life function in the class of lifetime distributions that have bathtub-shaped hazard rate functions. For this class of distributions, the shape of the $ \alpha $-quantile residual lifetime function was studied. Then, the change points of the $ \alpha $-quantile residual life function of a general weighted hazard rate model were compared with the corresponding change points of the basic model in terms of their location. As a special weighted model, the order statistics were considered and the change points related to the order statistics were compared with the change points of the baseline distribution. Moreover, some comparisons of the change points of two different order statistics were presented.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modelling and Simulation,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献