Fast reactions with non-interacting species in stochastic reaction networks

Author:

Hoessly Linard, ,Wiuf Carsten

Abstract

<abstract><p>We consider stochastic reaction networks modeled by continuous-time Markov chains. Such reaction networks often contain many reactions, potentially occurring at different time scales, and have unknown parameters (kinetic rates, total amounts). This makes their analysis complex. We examine stochastic reaction networks with non-interacting species that often appear in examples of interest (e.g. in the two-substrate Michaelis Menten mechanism). Non-interacting species typically appear as intermediate (or transient) chemical complexes that are depleted at a fast rate. We embed the Markov process of the reaction network into a one-parameter family under a two time-scale approach, such that molecules of non-interacting species are degraded fast. We derive simplified reaction networks where the non-interacting species are eliminated and that approximate the scaled Markov process in the limit as the parameter becomes small. Then, we derive sufficient conditions for such reductions based on the reaction network structure for both homogeneous and time-varying stochastic settings, and study examples and properties of the reduction.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference40 articles.

1. J. D. Murray, Mathematical Biology I. An Introduction, volume 17 of Interdisciplinary Applied Mathematics, Springer, New York, 3 edition, (2002). doi: 10.1007/b9886

2. E. Weinan, Principles of Multiscale Modeling, Cambridge University Press, (2011).

3. L. Segal, M. Slemrod, The quasi-steady-state assumption: A case study in perturbation, SIAM Rev., 31 (1989), 446–477. doi: 10.1137/1031091

4. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqns., 31 (1979), 53–98. doi: 10.1016/0022-0396(79)90152-9

5. A. N. Tikhonov, Systems of differential equations containing a small parameter multiplying the derivative (in Russian), Math. Sb., 31 (1952), 575–586.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the sum of chemical reactions;European Journal of Applied Mathematics;2022-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3