Author:
Hoessly Linard, ,Wiuf Carsten
Abstract
<abstract><p>We consider stochastic reaction networks modeled by continuous-time Markov chains. Such reaction networks often contain many reactions, potentially occurring at different time scales, and have unknown parameters (kinetic rates, total amounts). This makes their analysis complex. We examine stochastic reaction networks with non-interacting species that often appear in examples of interest (e.g. in the two-substrate Michaelis Menten mechanism). Non-interacting species typically appear as intermediate (or transient) chemical complexes that are depleted at a fast rate. We embed the Markov process of the reaction network into a one-parameter family under a two time-scale approach, such that molecules of non-interacting species are degraded fast. We derive simplified reaction networks where the non-interacting species are eliminated and that approximate the scaled Markov process in the limit as the parameter becomes small. Then, we derive sufficient conditions for such reductions based on the reaction network structure for both homogeneous and time-varying stochastic settings, and study examples and properties of the reduction.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference40 articles.
1. J. D. Murray, Mathematical Biology I. An Introduction, volume 17 of Interdisciplinary Applied Mathematics, Springer, New York, 3 edition, (2002). doi: 10.1007/b9886
2. E. Weinan, Principles of Multiscale Modeling, Cambridge University Press, (2011).
3. L. Segal, M. Slemrod, The quasi-steady-state assumption: A case study in perturbation, SIAM Rev., 31 (1989), 446–477. doi: 10.1137/1031091
4. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqns., 31 (1979), 53–98. doi: 10.1016/0022-0396(79)90152-9
5. A. N. Tikhonov, Systems of differential equations containing a small parameter multiplying the derivative (in Russian), Math. Sb., 31 (1952), 575–586.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the sum of chemical reactions;European Journal of Applied Mathematics;2022-05-24