Author:
Bima Abdulhadi Ibrahim H., ,Elsamanoudy Ayman Zaky,Albaqami Walaa F,Khan Zeenath,Parambath Snijesh Valiya,Al-Rayes Nuha,Kaipa Prabhakar Rao,Elango Ramu,Banaganapalli Babajan,Shaik Noor A., , , , , , ,
Abstract
<abstract>
<p>Obesity and type 2 and diabetes mellitus (T2D) are two dual epidemics whose shared genetic pathological mechanisms are still far from being fully understood. Therefore, this study is aimed at discovering key genes, molecular mechanisms, and new drug targets for obesity and T2D by analyzing the genome wide gene expression data with different computational biology approaches. In this study, the RNA-sequencing data of isolated primary human adipocytes from individuals who are lean, obese, and T2D was analyzed by an integrated framework consisting of gene expression, protein interaction network (PIN), tissue specificity, and druggability approaches. Our findings show a total of 1932 unique differentially expressed genes (DEGs) across the diabetes versus obese group comparison (p≤0.05). The PIN analysis of these 1932 DEGs identified 190 high centrality network (HCN) genes, which were annotated against 3367 GO terms and functional pathways, like response to insulin signaling, phosphorylation, lipid metabolism, glucose metabolism, etc. (p≤0.05). By applying additional PIN and topological parameters to 190 HCN genes, we further mapped 25 high confidence genes, functionally connected with diabetes and obesity traits. Interestingly, <italic>ERBB2, FN1, FYN, HSPA1A, HBA1</italic>, and <italic>ITGB1</italic> genes were found to be tractable by small chemicals, antibodies, and/or enzyme molecules. In conclusion, our study highlights the potential of computational biology methods in correlating expression data to topological parameters, functional relationships, and druggability characteristics of the candidate genes involved in complex metabolic disorders with a common etiological basis.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference61 articles.
1. A. S. Al-Goblan, M. A. Al-Alfi, M. Z. Khan. Mechanism linking diabetes mellitus and obesity, Diabetes Metab. Syndr. Obes., 7 (2014), 587–591. doi: 10.2147/dmso.S67400
2. A. A. Rao, N. M. Tayaru, H. Thota, S. B. Changalasetty, L. S. Thota, S. Gedela, Bioinformatic analysis of functional proteins involved in obesity associated with diabetes, Int. J. Biomed. Sci., 4 (2008), 70–73.
3. P. E. Scherer, J. A. Hill, Obesity, diabetes, and cardiovascular diseases: A compendium, Circ. Res., 118 (2016), 1703–1705. doi: 10.1161/circresaha.116.308999
4. G. R. Babu, G. V. S. Murthy, Y. Ana, P. Patel, R. Deepa, S. E. B. Neelon, et al. Association of obesity with hypertension and type 2 diabetes mellitus in India: A meta-analysis of observational studies, World J. Diabetes, 9 (2018), 40–52. doi: 10.4239/wjd.v9.i1.40
5. A. Medina-Remón, R. Kirwan, R. M. Lamuela-Raventós, R. Estruch. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases, Crit. Rev. Food Sci. Nutr., 58 (2018), 262–296. doi: 10.1080/10408398.2016.1158690