1. K. Wang, Z. Zou, Q. Deng, R. Wu, J. Tao, C. Fan, Reinforcement learning with a disentangled universal value function for item recommendation, in Proceedings of the AAAI conference on artificial intelligence, 35 (2021), 4427-4435. https://doi.org/10.48550/arXiv.2104.02981
2. R. Yu, Y. Gong, X. He, B. An, Y. Zhu, Q. Liu, et al., Personalized adaptive meta learning for cold-start user preference prediction, preprint, arXiv: 2012.11842. https://doi.org/10.48550/arXiv.2012.11842
3. A. Javari, Z. He, Z. Huang, R. Jeetu, C. C. Chang, Weakly supervised attention for hashtag recommendation using graph data, in Proceedings of The Web Conference, (2020), 1038-1048. https://doi.org/10.1145/3366423.3380182
4. C. Tong, X. Yin, J. Li, T. Zhu, R. Lv, L. Sun, et al., A shilling attack detector based on convolutional neural network for collaborative recommender system in social aware network, Comput. J., 7 (2018), 949-958. https://doi.org/10.1093/comjnl/bxy008
5. C. Rami, O. S. Shalom, D. Jannach, A. Amir, A black-box attack model for visually-aware recommender systems, in Proceedings of the 14th ACM International Conference on Web Search and Data Mining, (2021), 94-102. https://doi.org/10.1145/3437963.3441757