Objective space division-based hybrid evolutionary algorithm for handing overlapping solutions in combinatorial problems
-
Published:2022
Issue:4
Volume:19
Page:3369-3401
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
González Begoña, ,Rossit Daniel A.,Méndez Máximo,Frutos Mariano, ,
Abstract
<abstract>
<p>Overlapping solutions occur when more than one solution in the space of decisions maps to the same solution in the space of objectives. This situation threatens the exploration capacity of Multi-Objective Evolutionary Algorithms (MOEAs), preventing them from having a good diversity in their population. The influence of overlapping solutions is intensified on multi-objective combinatorial problems with a low number of objectives. This paper presents a hybrid MOEA for handling overlapping solutions that combines the classic NSGA-II with a strategy based on Objective Space Division (OSD). Basically, in each generation of the algorithm, the objective space is divided into several regions using the nadir solution calculated from the current generation solutions. Furthermore, the solutions in each region are classified into non-dominated fronts using different optimization strategies in each of them. This significantly enhances the achieved diversity of the approximate front of non-dominated solutions. The proposed algorithm (called NSGA-II/OSD) is tested on a classic Operations Research problem: the Multi-Objective Knapsack Problem (0-1 MOKP) with two objectives. Classic NSGA-II, MOEA/D and Global WASF-GA are used to compare the performance of NSGA-II/OSD. In the case of MOEA/D two different versions are implemented, each of them with a different strategy for specifying the reference point. These MOEA/D reference point strategies are thoroughly studied and new insights are provided. This paper analyses in depth the impact of overlapping solutions on MOEAs, studying the number of overlapping solutions, the number of solution repairs, the hypervolume metric, the attainment surfaces and the approximation to the real Pareto front, for different sizes of 0-1 MOKPs with two objectives. The proposed method offers very good performance when compared to the classic NSGA-II, MOEA/D and Global WASF-GA algorithms, all of them well-known in the literature.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference31 articles.
1. C. A. C. Coello, G. B. Lamont, D. A. V. Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edition, Springer, New York, 2007. 2. H. Zhang, J. Sun, T. Liu, K. Zhang, Q. Zhang, Balancing exploration and exploitation in multi-objective evolutionary optimization, Inf. Sci., 497 (2019), 129-148. https://doi.org/10.1016/j.ins.2019.05.046 3. M. Méndez, D. A. Rossit, B. González, M. Frutos, Proposal and comparative study of evolutionary algorithms for optimum design of a gear system, IEEE Access, 8 (2020), 3482-3497. https://doi.org/10.1109/ACCESS.2019.2962906 4. C. Wang, J. Li, H. Rao, A. Chen, J. Jiao, N. Zou, L. Gu, Multi-objective grasshopper optimization algorithm based on multi-group and co-evolution, Math. Biosci. Eng., 18 (2021), 2527-2561. https://doi.org/10.3934/mbe.2021129 5. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6 (2002), 182-197. https://doi.org/10.1109/4235.996017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|