Author:
Li Tingting,Xu Ziheng,Fan Shengjun
Abstract
<p style='text-indent:20px;'>This paper establishes an existence and uniqueness result for the adapted solution of a general time interval multidimensional backward stochastic differential equation (BSDE), where the generator <inline-formula> <tex-math id="M1">\begin{document}$ g $\end{document}</tex-math> </inline-formula> satisfies a weak stochastic-monotonicity condition and a general growth condition in the state variable <inline-formula> <tex-math id="M2">\begin{document}$ y $\end{document}</tex-math> </inline-formula>, and a stochastic-Lipschitz condition in the state variable <inline-formula> <tex-math id="M3">\begin{document}$ z $\end{document}</tex-math> </inline-formula>. This unifies and strengthens some known works. In order to prove this result, we develop some ideas and techniques employed in Xiao and Fan [<xref ref-type="bibr" rid="b25">25</xref>] and Liu et al. [<xref ref-type="bibr" rid="b15">15</xref>]. In particular, we put forward and prove a stochastic Gronwall-type inequality and a stochastic Bihari-type inequality, which generalize the classical ones and may be useful in other applications. The martingale representation theorem, Itô’s formula, and the BMO martingale tool are used to prove these two inequalities. </p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference25 articles.
1. Bender, C. and Kohlmann, M., BSDES with stochastic lipschitz condition, In: CoFE-Diskussionspapiere/Zentrum für Finanzen und Ökonometrie, 2000, http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-4241.
2. Bismut, J., Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 1973, 44(2): 384−404.
3. Briand, P. and Confortola, F., BSDEs with stochastic lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Process. Appl., 2008, 118(5): 818−838.
4. Briand, P., Delyon, B., Hu, Y., Pardoux, E. and Stoica, L.,
\begin{document}$ L^p $\end{document}
solutions of backward stochastic differential equations, Stochastic Process. Appl., 2003, 108(1): 109−129.
5. Chen, Z. and Wang, B., Infinite time interval BSDEs and the convergence of
\begin{document}$ g\text{-}{\rm{martingales}} $\end{document}
, Journal of the Australian Mathematical Society (Series A), 2000, 69(2): 187−211.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献