Author:
Sousa J. Vanterler da C., ,Kucche Kishor D.,de Oliveira E. Capelas,
Abstract
<abstract><p>Since the first work on Ulam-Hyers stabilities of differential equation solutions to date, many important and relevant papers have been published, both in the sense of integer order and fractional order differential equations. However, when we enter the field of fractional calculus, in particular, involving fractional differential equations, the path that is still long to be traveled, although there is a range of published works. In this sense, in this paper, we investigate the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of mild solutions for fractional nonlinear abstract Cauchy problem in the intervals $ [0, T] $ and $ [0, \infty) $ using Banach fixed point theorem.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference45 articles.
1. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. http://doi.org/10.1073/pnas.27.4.222
2. S. M. Ulam, Problems in Modern Mathematics, science editions, John-Wiley & Sons Inc., New York, 1964.
3. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
4. M. Akkouchi, A. Bounabat, M. H. L. Rhali, Fixed point approach to the stability of integral equation in the sense of Ulam-Hyers-Rassias, Ann. Math. Silesianae, 5 (2011), 27–44.
5. S. M. Ulam, A Collection of Mathematical Problems, 1960.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献