Author:
Wang Fang, ,Li Weiguo,Bao Wendi,Liu Li
Abstract
<abstract><p>For solving large-scale consistent linear system, a greedy randomized Kaczmarz method with oblique projection and a maximal weighted residual Kaczmarz method with oblique projection are proposed. By using oblique projection, these two methods greatly reduce the number of iteration steps and running time to find the minimum norm solution, especially when the rows of matrix are highly linearly correlated. Theoretical proof and numerical results show that the greedy randomized Kaczmarz method with oblique projection and the maximal weighted residual Kaczmarz method with oblique projection are more effective than the greedy randomized Kaczmarz method and the maximal weighted residual Kaczmarz method respectively.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献