Author:
Aydin Mustafa, ,Mahmudov Nazim I.,Aktuğlu Hüseyin,Baytunç Erdem,Atamert Mehmet S.,
Abstract
<abstract><p>We give a representation of solutions to linear nonhomogeneous $ \Psi $-fractional delayed differential equations with noncommutative matrices. We newly define $ \Psi $-delay perturbation of Mittag-Leffler type matrix function with two parameters and apply the method of variation of constants to obtain the representation of the solutions. We investigate the existence and uniqueness of solutions for a class of $ \Psi $-fractional delayed semilinear differential equations by using Banach Fixed Point Theorem. Further, we establish the Ulam-Hyers stability result for the analyzed problem. Finally, we provide some examples to illustrate the applicability of our results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference27 articles.
1. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006.
2. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.
3. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputoo Type, Springer-Verlag, Berlin, 2010.
4. M. Caputo, Linear model of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
5. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, 2000. https://doi.org/10.1142/3779
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献