The time evolution of the large exponential and power population growth and their relation to the discrete linear birth-death process

Author:

Abdel-Rehim E. A.

Abstract

<abstract><p>The Feller exponential population growth is the continuous analogues of the classical branching process with fixed number of individuals. In this paper, I begin by proving that the discrete birth-death process, $ M/M/1 $ queue, could be mathematically modelled by the same Feller exponential growth equation via the Kolmogorov forward equation. This equation mathematically formulates the classical Markov chain process. The non-classical linear birth-death growth equation is studied by extending the first-order time derivative by the Caputo time fractional operator, to study the effect of the memory on this stochastic process. The approximate solutions of the models are numerically studied by implementing the finite difference method and the fourth order compact finite difference method. The stability of the difference schemes are studied by using the Matrix method. The time evolution of these approximate solutions are compared for different values of the time fractional orders. The approximate solutions corresponding to different values of the birth and death rates are also compared.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3