Author:
Bazarra Noelia, ,Fernández José R.,Quintanilla Ramón,
Abstract
<abstract><p>In this work, we study, from the numerical point of view, a dynamic thermoviscoelastic problem involving micropolar materials. The model leads to a linear system composed of parabolic partial differential equations for the displacements, the microrotation and the temperature. Its weak form is written as a linear system made of first-order variational equations, in terms of the velocity field, the microrotation speed and the temperature. Fully discrete approximations are introduced by using the finite element method and the implicit Euler scheme. A discrete stability property and a priori error estimates are proved, from which the linear convergence is derived under some additional regularity conditions. Finally, some two-dimensional numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference31 articles.
1. W. Voigt, Theoretische Studien über die Elasticitätsverhältnisse der Krystalle, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 1887.
2. E. Cosserat, F. Cosserat, Théorie des corps déformables, Hermann, Paris, 1909. https://doi.org/10.1038/081067a0
3. A. C. Eringen, E. S. Suhubi, Non-linear theory of simple microelastic solids, part I, Int. J. Eng. Sci., 2 (1964), 189–203. https://doi.org/10.1016/0020-7225(64)90004-7
4. A. C. Eringen, E. S. Suhubi, Non-linear theory of simple microelastic solids, part II, Int. J. Eng. Sci., 2 (1964), 389–404. https://doi.org/10.1016/0020-7225(64)90017-5
5. A. C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech., 15 (1966), 909–923. http://www.jstor.org/stable/24901442
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献