Numerical analysis of a problem in micropolar thermoviscoelasticity

Author:

Bazarra Noelia, ,Fernández José R.,Quintanilla Ramón,

Abstract

<abstract><p>In this work, we study, from the numerical point of view, a dynamic thermoviscoelastic problem involving micropolar materials. The model leads to a linear system composed of parabolic partial differential equations for the displacements, the microrotation and the temperature. Its weak form is written as a linear system made of first-order variational equations, in terms of the velocity field, the microrotation speed and the temperature. Fully discrete approximations are introduced by using the finite element method and the implicit Euler scheme. A discrete stability property and a priori error estimates are proved, from which the linear convergence is derived under some additional regularity conditions. Finally, some two-dimensional numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference31 articles.

1. W. Voigt, Theoretische Studien über die Elasticitätsverhältnisse der Krystalle, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 1887.

2. E. Cosserat, F. Cosserat, Théorie des corps déformables, Hermann, Paris, 1909. https://doi.org/10.1038/081067a0

3. A. C. Eringen, E. S. Suhubi, Non-linear theory of simple microelastic solids, part I, Int. J. Eng. Sci., 2 (1964), 189–203. https://doi.org/10.1016/0020-7225(64)90004-7

4. A. C. Eringen, E. S. Suhubi, Non-linear theory of simple microelastic solids, part II, Int. J. Eng. Sci., 2 (1964), 389–404. https://doi.org/10.1016/0020-7225(64)90017-5

5. A. C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech., 15 (1966), 909–923. http://www.jstor.org/stable/24901442

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropy can imply exponential decay in micropolar elasticity;Mechanics Research Communications;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3