Distributed Bayesian posterior voting strategy for massive data

Author:

Li Xuerui1,Kang Lican2,Liu Yanyan1,Wu Yuanshan3

Affiliation:

1. School of Mathematics and Statistics, Wuhan University, China

2. Center for Quantitative Medicine Duke-NUS Medical School, Singapore

3. School of Statistics and Mathematics, Zhongnan University of Economics and Law, China

Abstract

<abstract><p>The emergence of massive data has driven recent interest in developing statistical learning and large-scale algorithms for analysis on distributed platforms. One of the widely used statistical approaches is split-and-conquer (SaC), which was originally performed by aggregating all local solutions through a simple average to reduce the computational burden caused by communication costs. Aiming at lower computation cost and satisfactorily acceptable accuracy, this paper extends SaC to Bayesian variable selection for ultra-high dimensional linear regression and builds BVSaC for aggregation. Suppose ultrahigh-dimensional data are stored in a distributed manner across multiple computing nodes, with each computing resource containing a disjoint subset of data. On each node machine, we perform variable selection and coefficient estimation through a hierarchical Bayes formulation. Then, a weighted majority voting method BVSaC is used to combine the local results to retain good performance. The proposed approach only requires a small portion of computation cost on each local dataset and therefore eases the computational burden, especially in Bayesian computation, meanwhile, pays a little cost to receive accuracy, which in turn increases the feasibility of analyzing extraordinarily large datasets. Simulations and a real-world example show that the proposed approach performed as well as the whole sample hierarchical Bayes method in terms of the accuracy of variable selection and estimation.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3