Existence and stability of normalized solutions to the mixed dispersion nonlinear Schrödinger equations

Author:

Luo Haijun1,Zhang Zhitao234

Affiliation:

1. School of Mathematics, Hunan Provincial Key Laboratory of Intelligent Information Processing and Applied Mathematics, Hunan University, Changsha 410082, Hunan, China

2. School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China

3. HLM, Academy of Mathematics and Systems Science, the Chinese Academy of Sciences, Beijing 100190, China

4. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

<abstract><p>We study the existence and orbital stability of normalized solutions of the biharmonic equation with the mixed dispersion and a general nonlinear term</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \gamma\Delta^2u-\beta\Delta u+\lambda u = f(u), \quad x\in\mathbb{R}^N \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>with a priori prescribed $ L^2 $-norm constraint $ S_a: = \left\{u\in H^2(\mathbb{R}^N):\int_{\mathbb{R}^N}|u|^2dx = a\right\}, $ where $ a &gt; 0 $, $ \gamma &gt; 0, \beta\in\mathbb{R} $ and the nonlinear term $ f $ satisfies the suitable $ L^2 $-subcritical assumptions. When $ \beta\geq0 $, we prove that there exists a threshold value $ a_0\geq0 $ such that the equation above has a ground state solution which is orbitally stable if $ a &gt; a_0 $ and has no ground state solution if $ a &lt; a_0 $. However, for $ \beta &lt; 0 $, this case is more involved. Under an additional assumption on $ f $, we get the similar results on the existence and orbital stability of ground state. Finally, we consider a specific nonlinearity $ f(u) = |u|^{p-2}u+\mu|u|^{q-2}u, 2 &lt; q &lt; p &lt; 2+8/N, \mu &lt; 0 $ under the case $ \beta &lt; 0 $, which does not satisfy the additional assumption. And we use the example to show that the energy in the case $ \beta &lt; 0 $ exhibits a more complicated nature than that of the case $ \beta\geq0 $.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3