Author:
Filippucci Roberta,Ghergu Marius
Abstract
<p style='text-indent:20px;'>In this paper we investigate the nonexistence of nonnegative solutions of parabolic inequalities of the form</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{cases} &u_t \pm L_\mathcal A u\geq (K\ast u^p)u^q \quad\mbox{ in } \mathbb R^N \times \mathbb (0,\infty),\, N\geq 1,\\ &u(x,0) = u_0(x)\ge0 \,\, \text{ in } \mathbb R^N,\end{cases} \qquad (P^{\pm}) $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ u_0\in L^1_{loc}({\mathbb R}^N) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ L_{\mathcal{A}} $\end{document}</tex-math></inline-formula> denotes a weakly <inline-formula><tex-math id="M3">\begin{document}$ m $\end{document}</tex-math></inline-formula>-coercive operator, which includes as prototype the <inline-formula><tex-math id="M4">\begin{document}$ m $\end{document}</tex-math></inline-formula>-Laplacian or the generalized mean curvature operator, <inline-formula><tex-math id="M5">\begin{document}$ p,\,q>0 $\end{document}</tex-math></inline-formula>, while <inline-formula><tex-math id="M6">\begin{document}$ K\ast u^p $\end{document}</tex-math></inline-formula> stands for the standard convolution operator between a weight <inline-formula><tex-math id="M7">\begin{document}$ K>0 $\end{document}</tex-math></inline-formula> satisfying suitable conditions at infinity and <inline-formula><tex-math id="M8">\begin{document}$ u^p $\end{document}</tex-math></inline-formula>. For problem <inline-formula><tex-math id="M9">\begin{document}$ (P^-) $\end{document}</tex-math></inline-formula> we obtain a Fujita type exponent while for <inline-formula><tex-math id="M10">\begin{document}$ (P^+) $\end{document}</tex-math></inline-formula> we show that no such critical exponent exists. Our approach relies on nonlinear capacity estimates adapted to the nonlocal setting of our problems. No comparison results or maximum principles are required.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference28 articles.
1. A. T. Duong and Q. H. Phan, Optimal Liouville-type theorems for a system of parabolic inequalities, Commun. Contemp. Math., 22 (2020), 1950043, 22 pp.
2. R. Filippucci and M. Ghergu, Singular solutions for coercive quasilinear elliptic inequalities with nonlocal terms, Nonlinear Anal., 197 (2020), 111857, 22 pp.
3. R. Filippucci, S. Lombardi.Fujita type results for parabolic inequalities with gradient terms, J. Differential Equations, 268 (2020), 1873-1910.
4. H. Fujita.On the blowing up of solutions to the Cauchy problem for $u_t = \Delta u + u^{1 + \alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
5. V. A. Galaktionov, H. A. Levine.A general approach to Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., 34 (1998), 1005-1027.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献