Author:
Paredes Jorge Morales,Soriano Méndez Félix Humberto
Abstract
<p style='text-indent:20px;'>In this paper we examine the well-posedness and ill-posedeness of the Cauchy problems associated with a family of equations of ZK-KP-type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{cases} u_{t} = u_{xxx}-\mathscr{H}D_{x}^{\alpha}u_{yy}+uu_{x}, \cr u(0) = \psi \in Z \end{cases} $\end{document} </tex-math> </disp-formula></p><p style='text-indent:20px;'>in anisotropic Sobolev spaces, where <inline-formula><tex-math id="M1">\begin{document}$ 1\le \alpha \le 1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \mathscr{H} $\end{document}</tex-math></inline-formula> is the Hilbert transform and <inline-formula><tex-math id="M3">\begin{document}$ D_{x}^{\alpha} $\end{document}</tex-math></inline-formula> is the fractional derivative, both with respect to <inline-formula><tex-math id="M4">\begin{document}$ x $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis