Affiliation:
1. School of Mathematics, National University of Colombia, Medellín 050034, Colombia
Abstract
<p style='text-indent:20px;'>Consider <inline-formula><tex-math id="M2">\begin{document}$ \beta > 1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \lfloor \beta \rfloor $\end{document}</tex-math></inline-formula> its integer part. It is widely known that any real number <inline-formula><tex-math id="M4">\begin{document}$ \alpha \in \Bigl[0, \frac{\lfloor \beta \rfloor}{\beta - 1}\Bigr] $\end{document}</tex-math></inline-formula> can be represented in base <inline-formula><tex-math id="M5">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> using a development in series of the form <inline-formula><tex-math id="M6">\begin{document}$ \alpha = \sum_{n = 1}^\infty x_n\beta^{-n} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M7">\begin{document}$ x = (x_n)_{n \geq 1} $\end{document}</tex-math></inline-formula> is a sequence taking values into the alphabet <inline-formula><tex-math id="M8">\begin{document}$ \{0,\; ...\; ,\; \lfloor \beta \rfloor\} $\end{document}</tex-math></inline-formula>. The so called <inline-formula><tex-math id="M9">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-shift, denoted by <inline-formula><tex-math id="M10">\begin{document}$ \Sigma_\beta $\end{document}</tex-math></inline-formula>, is given as the set of sequences such that all their iterates by the shift map are less than or equal to the quasi-greedy <inline-formula><tex-math id="M11">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id="M12">\begin{document}$ 1 $\end{document}</tex-math></inline-formula>. Fixing a Hölder continuous potential <inline-formula><tex-math id="M13">\begin{document}$ A $\end{document}</tex-math></inline-formula>, we show an explicit expression for the main eigenfunction of the Ruelle operator <inline-formula><tex-math id="M14">\begin{document}$ \psi_A $\end{document}</tex-math></inline-formula>, in order to obtain a natural extension to the bilateral <inline-formula><tex-math id="M15">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-shift of its corresponding Gibbs state <inline-formula><tex-math id="M16">\begin{document}$ \mu_A $\end{document}</tex-math></inline-formula>. Our main goal here is to prove a first level large deviations principle for the family <inline-formula><tex-math id="M17">\begin{document}$ (\mu_{tA})_{t>1} $\end{document}</tex-math></inline-formula> with a rate function <inline-formula><tex-math id="M18">\begin{document}$ I $\end{document}</tex-math></inline-formula> attaining its maximum value on the union of the supports of all the maximizing measures of <inline-formula><tex-math id="M19">\begin{document}$ A $\end{document}</tex-math></inline-formula>. The above is proved through a technique using the representation of <inline-formula><tex-math id="M20">\begin{document}$ \Sigma_\beta $\end{document}</tex-math></inline-formula> and its bilateral extension <inline-formula><tex-math id="M21">\begin{document}$ \widehat{\Sigma_\beta} $\end{document}</tex-math></inline-formula> in terms of the quasi-greedy <inline-formula><tex-math id="M22">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id="M23">\begin{document}$ 1 $\end{document}</tex-math></inline-formula> and the so called involution kernel associated to the potential <inline-formula><tex-math id="M24">\begin{document}$ A $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference30 articles.
1. A. Baraviera, R. Leplaideur and A. Lopes, Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013. 29o Colóquio Brasileiro de Matemática. [29th Brazilian Mathematics Colloquium].
2. A. Baraviera, A. O. Lopes, P. Thieullen.A large deviation principle for the equilibrium states of Hölder potentials: The zero temperature case, Stoch. Dyn., 6 (2006), 77-96.
3. A. T. Baraviera, L. M. Cioletti, A. O. Lopes, J. Mohr, R. R. Souza.On the general one-dimensional $XY$ model: Positive and zero temperature, selection and non-selection, Rev. Math. Phys., 23 (2011), 1063-1113.
4. A. Bertrand-Mathis.Développement en base $\theta$; répartition modulo un de la suite $(x\theta^n)_{n\geq 0}$; langages codés et $\theta$-shift, Bull. Soc. Math. France, 114 (1986), 271-323.
5. R. Bissacot, J. K. Mengue and E. Pérez, A large deviation principle for gibbs states on countable markov shifts at zero temperature, 2015. arXiv: 1612.05831.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献