Abstract
<p style='text-indent:20px;'>This is the second part of a series devoting to the generalizations and applications of common theorems in variational bifurcation theory. Using abstract theorems in the first part we obtain many new bifurcation results for quasi-linear elliptic boundary value problems of higher order.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference42 articles.
1. R. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition, Pure and Applied Mathematics Series, Vol. 140, Academic Press, 2003.
2. E. Benincasa, A. Canino.A bifurcation result of Böhme-Marino type for quasilinear elliptic equations, Topol. Meth. Nonlinear Anal., 31 (2008), 1-17.
3. R. G. Bettiol, P. Piccione.Delaunay-type hypersurfaces in cohomogeneity one manifolds, International Mathematics Research Notices, 2016 (2016), 3124-3162.
4. R. G. Bettiol, P. Piccione and G. Siciliano, Equivariant bifurcation in geometric variational problems, Analysis and Topology in Nonlinear Differential Equations, 103–133, Progr. Nonlinear Differential Equations Appl., 85, Birkhüser/Springer, Cham, 2014.
5. N. A. Bobylev, Yu. M. Burman.Morse lemmas for multi-dimensional variational problems, Nonlinear Analysis, 18 (1992), 595-604.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献