Abstract
<p style='text-indent:20px;'>In this paper we show that the solution of an obstacle problem for linearly elastic elliptic membrane shells enjoys higher differentiability properties in the interior of the domain where it is defined.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference28 articles.
1. S. Agmon, A. Douglis, L. Nirenberg.Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727.
2. S. Agmon, A. Douglis, L. Nirenberg.Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math., 17 (1964), 35-92.
3. S. Boyd, L. Vandenberghe., Convex Optimization, ${ref.volume} (2004).
4. L. A. Caffarelli, A. Friedman.The obstacle problem for the biharmonic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 6 (1979), 151-184.
5. L. A. Caffarelli, A. Friedman, A. Torelli.The two-obstacle problem for the biharmonic operator, Pacific J. Math., 103 (1982), 325-335.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献