Asymptotic behavior of spreading fronts in an anisotropic multi-stable equation on $ \mathit{\boldsymbol{\mathbb{R}^N}} $

Author:

Matsuzawa Hiroshi1,Nara Mitsunori2

Affiliation:

1. Department of Mathematics and Physics, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka City, Kanagawa, 259-1293, Japan

2. Faculty of Science and Engineering, Iwate University, Ueda 3-18-34, Morioka, Iwate, 020-8550, Japan

Abstract

<p style='text-indent:20px;'>We consider the Cauchy problem for an anisotropic reaction diffusion equation with a multi-stable nonlinearity on <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ N\ge 2 $\end{document}</tex-math></inline-formula> and investigate the large time behavior of the solution. This problem with a bistable nonlinearity has been investigated by Matano, Mori and Nara [<i>Ann. Inst. H. Poincaré Anal. Non Linéaire</i> 36 (2019), pp. 585-626]. They showed that under the suitable condition on the initial function the solution develops a spreading front whose position is closely approximated by the expanding Wulff shape for all large times. In this paper we will extend their results to the problem with a multi-stable type nonlinearity, that is, the case where the nonlinearity can be decomposed to <inline-formula><tex-math id="M4">\begin{document}$ K $\end{document}</tex-math></inline-formula> number of bistable nonlinearities and show that under certain conditions on the nonlinearity and the initial function the solution develops <inline-formula><tex-math id="M5">\begin{document}$ K $\end{document}</tex-math></inline-formula> number of spreading fronts whose positions are closely approximated by the expanding Wulff shapes with different expanding speeds. In other words, for any direction the solution on the ray of the direction looks like stacked traveling waves, that is, on the ray the solution approaches the so called propagating terrace. The key step for extension to multi-stable case is to construct <inline-formula><tex-math id="M6">\begin{document}$ K $\end{document}</tex-math></inline-formula> number of upper solutions and lower solutions all at once.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3