Author:
Du Hengrong,Wang Changyou
Abstract
<p style='text-indent:20px;'>We establish the global existence of weak martingale solutions to the simplified stochastic Ericksen–Leslie system modeling the nematic liquid crystal flow driven by Wiener-type noises on the two-dimensional bounded domains. The construction of solutions is based on the convergence of Ginzburg–Landau approximations. To achieve such a convergence, we first utilize the concentration-cancellation method for the Ericksen stress tensor fields based on a Pohozaev type argument, and then the Skorokhod compactness theorem, which is built upon uniform energy estimates.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference27 articles.
1. A. Bensoussan.Stochastic Navier–Stokes equations, Acta Applicandae Mathematica, 38 (1995), 267-304.
2. Z. Brzeźniak, G. Deugoué and P. A. Razafimandimby, On strong solution to the 2D stochastic Ericksen–Leslie system: A Ginzburg–Landau approximation approach, arXiv preprint, arXiv: 2011.00100. (2020).
3. Z. Brzeźniak, G. Deugoué and P. A. Razafimandimby, On the 2D Ericksen-Leslie equations with anisotropic energy and external forces, arXiv preprint, arXiv: 2005.07659, (2020).
4. Z. Brzeźniak, E. Hausenblas and P. A. Razafimandimby, Strong solution to stochastic penalised nematic liquid crystals model driven by multiplicative Gaussian noise, arXiv: 2004.00590, (2020).
5. Z. Brzeźniak, E. Hausenblas, P. A. Razafimandimby.A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals, Disc. Contin. Dyn. Syst. Ser. B, 24 (2019), 5785-5802.