$ W^{1, p} $ estimates for elliptic problems with drift terms in Lipschitz domains

Author:

Shi Bojing

Abstract

<p style='text-indent:20px;'>In this paper, we establish the <inline-formula><tex-math id="M1">\begin{document}$ W^{1,p} $\end{document}</tex-math></inline-formula> estimates for solutions of second order elliptic problems with drift terms in bounded Lipschitz domains by using a real variable method. For scalar equations, we prove that the <inline-formula><tex-math id="M2">\begin{document}$ W^{1,p} $\end{document}</tex-math></inline-formula> estimates hold for <inline-formula><tex-math id="M3">\begin{document}$ \frac{3}{2}-\varepsilon&lt;p&lt;3+\varepsilon $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M4">\begin{document}$ d\geq3 $\end{document}</tex-math></inline-formula>, and the range for <inline-formula><tex-math id="M5">\begin{document}$ p $\end{document}</tex-math></inline-formula> is sharp. For elliptic systems, we prove that the <inline-formula><tex-math id="M6">\begin{document}$ W^{1,p} $\end{document}</tex-math></inline-formula> estimates hold for <inline-formula><tex-math id="M7">\begin{document}$ \frac{2d}{d+1}-\varepsilon&lt;p&lt;\frac{2d}{d-1}+\varepsilon $\end{document}</tex-math></inline-formula> under the assumption that the Lipschitz constant of the domain is small.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference25 articles.

1. P. Auscher, M. Qafsaoui.Observations on $W^{1, p}$ estimates for divergence elliptic equations with VMO coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5 (2002), 487-509.

2. L. A. Caffarelli, I. Peral.On $W^{1, p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1-21.

3. B. Dahlberg, C. Kenig.Hardy spaces and the Neumann problem in $L^p$ for Laplace's equation in Lipschitz domains, Ann. of Math. (2), 125 (1987), 437-465.

4. G. Di Fazio.$L^p$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7), 10 (1996), 409-420.

5. M. Dindoš, The $L^p$ Dirichlet and regularity problems for second order elliptic systems with application to the Lamé system, preprint, arXiv: 2006.13015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3