Author:
Yang Minbo,Zhao Fukun,Zhao Shunneng
Abstract
<p style='text-indent:20px;'>We consider the following nonlocal critical equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE145"> \begin{document}$\begin{equation} -\Delta u = (I_{\mu_1}\ast|u|^{2_{\mu_1}^\ast})|u|^{2_{\mu_1}^\ast-2}u +(I_{\mu_2}\ast|u|^{2_{\mu_2}^\ast})|u|^{2_{\mu_2}^\ast-2}u,\; x\in\mathbb{R}^N, \;\;\;\;\;\;\;(1) \end{equation}$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ 0<\mu_1,\mu_2<N $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M2">\begin{document}$ N = 3 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M3">\begin{document}$ 4 $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M4">\begin{document}$ N-4\leq\mu_1,\mu_2<N $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M5">\begin{document}$ N\geq5 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ 2_{\mu_{i}}^\ast: = \frac{N+\mu_i}{N-2}(i = 1,2) $\end{document}</tex-math></inline-formula> is the upper critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and <inline-formula><tex-math id="M7">\begin{document}$ I_{\mu_i} $\end{document}</tex-math></inline-formula> is the Riesz potential</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} I_{\mu_i}(x) = \frac{\Gamma(\frac{N-\mu_i}{2})}{\Gamma(\frac{\mu_i}{2})\pi^{\frac{N}{2}}2^{\mu_i}|x|^{N-\mu_i}}, \; i = 1,2, \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with <inline-formula><tex-math id="M8">\begin{document}$ \Gamma(s) = \int_{0}^{\infty}x^{s-1}e^{-x}dx $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ s>0 $\end{document}</tex-math></inline-formula>. Firstly, we prove the existence of the solutions of the equation (1). We also establish integrability and <inline-formula><tex-math id="M10">\begin{document}$ C^\infty $\end{document}</tex-math></inline-formula>-regularity of solutions and obtain the explicit forms of positive solutions via the method of moving spheres in integral forms. Finally, we show that the nondegeneracy of the linearized equation of (1) at <inline-formula><tex-math id="M11">\begin{document}$ U_0,V_0 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M12">\begin{document}$ \max\{\mu_1,\mu_2\}\rightarrow0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ \min\{\mu_1,\mu_2\}\rightarrow N $\end{document}</tex-math></inline-formula>, respectively.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献