Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space

Author:

Hui Kin Ming,Park Jinwan

Abstract

<p style='text-indent:20px;'>For <inline-formula><tex-math id="M1">\begin{document}$ n\ge 3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ 0&lt;m&lt;\frac{n-2}{n} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \beta&lt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \alpha = \frac{2\beta}{1-m} $\end{document}</tex-math></inline-formula>, we prove the existence, uniqueness and asymptotics near the origin of the singular eternal self-similar solutions of the fast diffusion equation in <inline-formula><tex-math id="M5">\begin{document}$ (\mathbb{R}^n\setminus\{0\})\times \mathbb{R} $\end{document}</tex-math></inline-formula> of the form <inline-formula><tex-math id="M6">\begin{document}$ U_{\lambda}(x,t) = e^{-\alpha t}f_{\lambda}(e^{-\beta t}x), x\in \mathbb{R}^n\setminus\{0\}, t\in\mathbb{R}, $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M7">\begin{document}$ f_{\lambda} $\end{document}</tex-math></inline-formula> is a radially symmetric function satisfying</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \frac{n-1}{m}\Delta f^m+\alpha f+\beta x\cdot\nabla f = 0 \text{ in }\mathbb{R}^n\setminus\{0\}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with <inline-formula><tex-math id="M8">\begin{document}$ \underset{\substack{r\to 0}}{\lim}\frac{r^2f(r)^{1-m}}{\log r^{-1}} = \frac{2(n-1)(n-2-nm)}{|\beta|(1-m)} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \underset{\substack{r\to\infty}}{\lim}r^{\frac{n-2}{m}}f(r) = \lambda^{\frac{2}{1-m}-\frac{n-2}{m}} $\end{document}</tex-math></inline-formula>, for some constant <inline-formula><tex-math id="M10">\begin{document}$ \lambda&gt;0 $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>As a consequence we prove the existence and uniqueness of solutions of Cauchy problem for the fast diffusion equation <inline-formula><tex-math id="M11">\begin{document}$ u_t = \frac{n-1}{m}\Delta u^m $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M12">\begin{document}$ (\mathbb{R}^n\setminus\{0\})\times (0,\infty) $\end{document}</tex-math></inline-formula> with initial value <inline-formula><tex-math id="M13">\begin{document}$ u_0 $\end{document}</tex-math></inline-formula> satisfying <inline-formula><tex-math id="M14">\begin{document}$ f_{\lambda_1}(x)\le u_0(x)\le f_{\lambda_2}(x) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M15">\begin{document}$ \forall x\in\mathbb{R}^n\setminus\{0\} $\end{document}</tex-math></inline-formula>, such that the solution <inline-formula><tex-math id="M16">\begin{document}$ u $\end{document}</tex-math></inline-formula> satisfies <inline-formula><tex-math id="M17">\begin{document}$ U_{\lambda_1}(x,t)\le u(x,t)\le U_{\lambda_2}(x,t) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M18">\begin{document}$ \forall x\in \mathbb{R}^n\setminus\{0\}, t\ge 0 $\end{document}</tex-math></inline-formula>, for some constants <inline-formula><tex-math id="M19">\begin{document}$ \lambda_1&gt;\lambda_2&gt;0 $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We also prove the asymptotic large time behaviour of such singular solution <inline-formula><tex-math id="M20">\begin{document}$ u $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M21">\begin{document}$ n = 3,4 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M22">\begin{document}$ \frac{n-2}{n+2}\le m&lt;\frac{n-2}{n} $\end{document}</tex-math></inline-formula> holds. Asymptotic large time behaviour of such singular solution <inline-formula><tex-math id="M23">\begin{document}$ u $\end{document}</tex-math></inline-formula> is also obtained when <inline-formula><tex-math id="M24">\begin{document}$ 3\le n&lt;8 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M25">\begin{document}$ 1-\sqrt{2/n}\le m&lt;\min\left(\frac{2(n-2)}{3n},\frac{n-2}{n+2}\right) $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M26">\begin{document}$ u(x,t) $\end{document}</tex-math></inline-formula> is radially symmetric in <inline-formula><tex-math id="M27">\begin{document}$ x\in\mathbb{R}^n\setminus\{0\} $\end{document}</tex-math></inline-formula> for any <inline-formula><tex-math id="M28">\begin{document}$ t&gt;0 $\end{document}</tex-math></inline-formula> under appropriate conditions on the initial value <inline-formula><tex-math id="M29">\begin{document}$ u_0 $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3