Abstract
<p style='text-indent:20px;'>It is known that, for many transcendental entire functions in the Eremenko-Lyubich class <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{B} $\end{document}</tex-math></inline-formula>, every escaping point can eventually be connected to infinity by a curve of escaping points. When this is the case, we say that the functions are <i>criniferous</i>. In this paper, we extend this result to a new class of maps in <inline-formula><tex-math id="M2">\begin{document}$ \mathcal{B} $\end{document}</tex-math></inline-formula>. Furthermore, we show that if a map belongs to this class, then its Julia set contains a <i>Cantor bouquet</i>; in other words, it is a subset of <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{C} $\end{document}</tex-math></inline-formula> ambiently homeomorphic to a straight brush.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A model for boundary dynamics of Baker domains;Mathematische Zeitschrift;2023-03-19
2. Topological dynamics of cosine maps;Mathematical Proceedings of the Cambridge Philosophical Society;2022-09-23
3. Splitting Hairs with Transcendental Entire Functions;International Mathematics Research Notices;2022-07-26